
UJX 539.3:534.1 

abl EXCITATION OF NORMAL AND ASSOCIATED WAVES IN AN INFINITE LAMNAR 
ELAsm SnuP 

PMM Vol.43, No.5, 1979, pp. 871-886 
P. E. KRASNUSHKIN 

(Moscow) 

(Received November 20, 1978) 

Forced harmonic vibrations in an infinite laminar elastic strip are considered. 
They are represented by the sum of normal and associated waves being prop- 
agated along the strip, i. e., along the layers. The properties of these waves, 
including the dispersion characteristics, are studied. 

The expansion of forced vibrations of an elastic laminar strip in normal and as- 
sociated waves travelling along the strip is performed here by the method of normal 

waves, (*) developed in [l- 31. To apply it, the left side of the inhomogeneous bound- 
ary value problem for the amplitudes of the vibrations is represented as the sum of two 
differential operators, one depends only on the transverse coordinate of the strip y, 
and the other on the coordinate z along the strip. The “longitudinal” operator should 
be of first order. The initial boundary value problem for the displacement amplitudes 
is reduced to the above-mentioned canonic form by doubling the dimensionality of 
the vector-function on which the operators act. The desired representation is obtained 

by expanding the solution in a series of eigen- and associated functions of the trans- 
verse operator. Its eigenvalues are the wave numbers of the normal waves.The men- 

tioned operator is nonself-adjoint, even in a lossless strip, hence, waves with com- 
plex wave numbers and waves associated to the normal waves enter into the solution 

in addition to the undamped normal waves. 
bet us note that Lamb [4] obtain a solution for a homogeneous strip in 1904 in the 

form of the sum of waves travelling along the 2 -axis with constant phase velocities 

and invariant amplitude distribution modes of the displacements along the g -axis by 

the method of transforming the contour integral. It is shown in [2,3] that these waves 

coincide with the normal waves. The associated waves were first introduced in [2] in 

the problem of electromagnetic wave propagation in a laminar medium. 
The substitution method (see [S], say) in which the expression for the wave which 

retains the vibrations mode along the Y -axis and the phase velocity along the 2 - 
axis, is substituted into the initial boundary value problem for the amplitudes of the 

elastic strip displacement, is also used extensively. It results in a spectral problem 
for a square beam [S - 81, equivalent to the spectral problem for the transverse op- 
erator (see Sect. 3) and governing the wave numbers and shortened modes of the 
normal waves, but not the amplitudes: 

~~ ~ 

*) Krasnushkin, P. E., Method of normal waves in application to waveguides and 

their algebraic prototypes. Doct. Dissertation, Moscow State University, 1945 . 
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1. Initial boundary value problem and its reduc- 
tion to canonical form. Letting D denote partial derivatives with 
respect to the coordinates indicated in the subscript, we obtain the boundary value 
problem 

[E,D sx t- W yy -t E,D xy + E,D, + E,D x + po21u = f 
y=O, y-d, ~E,D,+ED.lu=O (1. 1) 

;~:,-;*~;(;,“i;l$“~*~, E2 =iv,op* ‘*;‘*o, 

‘0 P* 
is= h o 

I /I 
E3 = D*,E,. E, = D,E 

v* = h, + 2p*, h, = h + io (q - 25 / 3), p* = p + ito5 

for the vector-function u = ~01 (u,, uy), where U, and uy are the displace- 
ment amplitudes of the vibrations in the strip 
caused by the force f (z, y) exp iot . 

(--<(:<oo, O,cy<d) 
Here, the Lam6 coefficients h, p and the 

strip density p are continuous functions of y, while 11 and 5 are viscosity coef- 
ficients which vanish when the dissipation parameter E -+ 0. The boundary condi- 

tions for: y = 0 and y = d in (1.1) refer to a free strip. For strips clamped at the 
edges, they are replaced by the conditions u = 0. The function f (5, y) = co1 

(fr, f,) d.ff f 1 ers rom zero only in the interval (JJ~, x2). For E # 0 the boundary 

value problem,(l. 1) has a uniquesolution. The solution for a lossless strip (q = 5 = 
0) is obtained therefrom for e--t 0. 

To reduce the boundary value problem (1.1) to canonical form, we introduce the 
vector function v mm co1 (u,, v!,) by using the relationship (1.2) 

v -m: [iaD, -1 pD,lu; a II chll, 13 1 llBmn II; w n = 1, 2 (1.2) 

Here amn, Pmn are arbitrary complex numbers subject to the condition det 
a # 0; From (1.1) we obtain the boundary value problem for the four-component 

vector function w := co1 (ux, uy, U,, u,) in the canonical form used in [l - 31 

I;,w + L,w = I: (2, y) = co1 (0, f”) (1.3) 
0 = co1 (0, o), f” = co1 (fx”, I,“) =- -aE, co1 (f,, f,) 

Here L, is a first order differential operator generated by the differential expres- 
sion 1, = iEd / aa: (I;: is the unit matrix of dimension 4 X 4) and the boundary 
conditions 1 w I-+ 0 as 1 z I -+ 00, L, is the “transverse” differential operat- 

or generated by the block matrix of the differential expressions 

I, =: 11 lij ]I; i, j = 1, 2; 2,, = BD,, I,, == -a-l, B = a-‘p (1.4) 

I,, = u (B2 - iE,‘B - E1’)D,, - a (Es’ -t iE,‘B)D II - 

I,, = (iaE,’ - fl)amlDy + iaE,‘a-‘; Ek’ = EoslEk, 

k = 1, 2, 3, 4 



00 excitation of wave4 in an elastic strip 945 

and the boundary conditions 

y = 0, y = d, [E, + iEB]D, and - iEa-‘v = 0 (1.5) 

The operator L, in whose eigen-elements the solution of the problem ( 1.3) is 
expanded, is obtained from the operator L, by replacing d I ay by d I dy. The 
operator L, acts on the vector function W (y) = co1 (U,, U,, Vs, V,) = w, 
where 5 is considered a fixed parameter. Here W (y) is an element of the func- 
tional vector space with the scalar product ( W, W’) from L,. 

The spectral properties of L, are independent of the selection of CI and fi (see 

Sect. 3 below). In order to give physical meaning to the scalar product, we select the 

specific operator Lyl, all = 3L* + 2p*, az2 = --CL,, PI2 = ib, BZI = 
-ip* as the operator L, (the remaining am,., and brnn equal zero). Then 
the vector-function W (3, y) = co1 (uz, uy, ioxx, - ia,,), where uxx, ozy 
are components of the stress tensor 0. The flux of vibrational power P through a 

given section, averaged with respect to time and the section 5 = CO& , is expres- 
sed in terms of the scalar product 

p = (Jwv w) = j ~(~x~~ - u,&) + (u,*u,, - u,*a,,)] dy, (1.6) 

J =i(“,, i’) 

Here E is a unit matrix of dimension 2 X 2. J is the J-operator, and the asterisk 

denotes the complex conjugate values. 
Differentiating (1.6) and taking (1.3) into account, we obtain the relation 

D ,P = i (JL,lw, W) - i (w, JL,lw) (1.71 

in the intervals of the 5 -axis where there are no forces. 
Because of the boundary condition for ) 2 1 -+ 00 in the case E # 0 D xP < 0 

for x>x2 and D,P>O for z<rl. For 8 = 0, it follows from the 

energy conservation law that D,P = 0 and (JL,‘w, w) = (w, JL,lw), i.e., 
the operator 4’ is J- self-adjoint. 

2. Expansion of the solution of the boundary 
value problem in normal and associated waves 
travelling along a strip. It is shown below (see Sect. 3) that the 

spectrum of the operator L,l is discrete with a single condensation point at infinity. 

Moreover, the operator L,r is Tamarkin regular [9] (* ). Hence, by assuming 

the function F to be sufficiently smooth in y, we represent the solution (1.3) in the 

form 

W (5, tJ) = 2 i yjk (X) Wjk (Y) 
I k=l 

(2.1) 

*) A. G. Kostiuchenko turned the author’s attention to this fact. 
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Here WjL (k = 1, 2, . . ., ‘G,) are the eigen (k = 1) and associated (k > 1) 
functions of the operator L,l determined from the equation 

(L,l - yjE)Wfk + Wrjk-’ = 0, Wj” = 0 (2.2) 

Here yj are eigenvalues of the operator L,‘. The functions Wjk are sub- 
ject to the biorthogonality conditions 

(Wj’, Gj,“‘) zz 0, j + i’ or k rf k’; ( Wjk, Gj”) = Njk (2.3) 

where Gjk are the eigen and associated functions of the operator conjugate to 

L,’ . The functions Gjk are determined from a chain of equations analogous to 

(2.2) [S]. Because of the J - self-adjointness of L ,,I , the scalar products in( 2.3) 

are expressed in terms of an integral of the power flux P (1.6). This does not hold 
for arbitrary cc and p. Thus, for instance, in the case of [lo] which follows from 

(1.2) for a,r = PI2 = h, -I- 2pFL*, cuss = pa1 = -_c1* (the remaining amn 

and Brnrr are zero), the so-called weighted orthogonality occurs (the integrals are 

supplemented by sums from the boundary conditions). 
Substituting (2.1) into (1.3) and taking account of (2.3), we obtain a chain of 

first order equations for Yjk (k = 1, 2, . . .v zj) 

id’P’~kldx + yjYjk + Yjk+’ = (F, Gjk)/Njk, Yy c 0, (2.4) 
It I--too, IYjk I+0 

we seek the solution (2.4) for a concentrated force F (z, y)6 (x - x’) by using 

a Green’s function. Consequently, the expansion (2.1) becomes 

‘j+ (2.5) 

w (~9 x’; Y) = 2 ,k, F&t (x’) QL (~7 x’; yJ* 

Qf* (2, x’; yj+) = exp [ iyj+ (x - x’)] [W,!, + i (x - x’) Wiz + . . _ 

iz-1 , 1-l 

+ 
(z-2) 
(I--1)! vi I 

Here Fj’ (d) are the right sides of (2.4), the yI in the upper and lower half- 
planes y are marked by the plus and minus signs (for 8 # 0 there are no real yj ) ; 
w (5, x’; IJ) equals the right side of (2.5) with the plus sign for x>x? and the 

minus sign for X < 5’. 

By definition, the term of the sum (2.5) of number j (I = 1) is called the mode 
of the normal wave of number j. A normal wave corresponds to each simple eigen- 

value yj , which differs from zero on the right (x > CC’) for yj+ and left 
(2 < x’) for yj_ of the section x = 2’. The four-component vector function 

Wjl (9) is called the mode of the normal wave of number j_ It follows from 

(1.2) that 
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Here Zj is the wave resistance operator of the normal wave of number i which 
sets up a relatio~ip between the stress-tensor and displacement components in the 

vector-function of the normal wave mode. The normal wave can be reproduced in 
the whole range (z’, co) or (-00, I’) in a certain section of the strip 5) =: 

Con& according to the given mode of Wjl , which permits considering the nor- 
mal wave as an evolutionary process being developed along the x axis. 

According to [2,3], the terms of the sum (2.5) with numbers j, j (I > 1) are 
called associated waves. Characteristic for them is the growth of the amplitude ac- 
cording to a power law with the increase in 1 x - x’ 1, which is suppressed by ex- 
ponential damping always available for E # 0, that assures compliance with the 
condition (1.1) as 1 x 1 4 00. 

Integrating (2.5), we obtain the solution of the problem (1.3) for an arbitrary ex- 

ternal force F (5, yf in the form 

‘if x 

w (x, y) = 2 2 s Ff+ (i) Qj+ dx’ + x 5 7 F;_ (x’) Qfi_ dz’ (2.7) 
j+ I=1 --m j- 1=1x 

3. Fundamental properties of normal waves. w&nat- 

ing V+ from (2.2) for k = 1, we obtain the spectral problem for a quadratic 
bundle in the parameter y by taking (1.4) and ( 1.5) into account 

I-y2E, f iy (E,D, + E,) + @,D,, + E, + PO~)IU’ = 0 (3.1) 

y=O, y=d, [EID,+iyEIU’=O 

The problem (3.1) de&mines the wave numbers yr and the shortened forms Uj2 
of the normal waves. By eliminating Vj a from the remaining equations in (2.2), we 
analogously obtain a chain of quadratic bundles to determine Ujka Since a and b 

do not enter into the quadratic bundle equations, the following property then holds 

for the class of representations of the operator L, ia, PI. 

1”. The wave numben yj of the normal waves are independent of the selection 
of a and fi in the operator A, , and their modes differ only by the components 

Vj’(JI) = (-Yj& + ~~~)"~l~~) 

The quadratic bundles in [S- 81 are obtained from the initial equations by sub- 
stituting u = U exp iyx , and the operator Lo [a = 1, p = 01 equivalent to 

the bundle is constructed for their investigation by doubling the dimensionality of u 

(but not of u) . Hence, by virtue of property I”, the results in [8] about the vibra- 

tions of an elastic cylinder can be used, We extract the following property from 

among them. 

2”. the spectrum of the wave numbers yj for a free and a clamped strip of 
variable density p (g> is discrete for 8 = 0 with a single condensation point at 

infinity, The number of real yj is finite and equal to N (.E). The system of mod- 

es {Wj6} is complete in Ha’ @ HP: * 
and the system of shortened modes {Ujk) 

is doubly complete in Ht2, where H2i is the Sobolev space. 
The property 3 * follows from the form of L yQ obtained from ( 1.4). 
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3’. For arbitrary 8 the normal waves of the strip form pairs with the wave numbers 
YJ and -_Yj. 

4”. For E = 0 the complex wave numbers form quartets, symmetric with res- 
pect to the real and imaginary axes of the y plane. 
waves for the operator L, have the form JGj,. 

The modes W,*of these normal 

Because of the J - self-adjointness of the operator La1 for 8 = 0 , its spect- 
urn forms a complex conjugate pair yj and yj*, which taking the property 3” 
into account proves the property 4”. 

5”. For E = 0 the normal waves with imaginary and complex wave numbers 
do not carry wave energy along the strip. 

There follows from property 4’: P,+ = (JWj,, Wj,) = (JW,,, JG,_) = 0, 

which indeed proves property 5”. 

Let us note that for waves with complex wave numbers there are energy fluxes 
different from zero in opposite directions in individual parts of the section I = const , 
which compensate each other on the average in the section. 

From the conservation of energy law applied to a segment (5, 2 -/- dx) of the 
strip, it follows that for small E for normal waves with imaginary and complex wave 
numbers Pj > 0 for yj+ and Pj < 0 for yj_. For normal waves with real 

yj , Wj' = JGj' and Pj z (JWj’, Wjl) # 0 for E = 0 . It follows 

from (I. 7) that Pj = P, exp [-2Imyjsl. Hence, for small 8, by virtue of 
the energy conservation law for the above-mentioned segment, the normal waves with 

Pj >O will have the wave numbers yj+ and yj- of normal waves with Pj < 0. 
Below, we shall designate normal waves with the wave numbers Yi+ (pj > O) 

as plus waves and normal waves with the wave numbers Tj_ (Pi < 0) as minus 

waves. We shall also distinguish normal waves according to the dispersion sign, i. e. , 
according to the group velocity direction vg = do/dy. Since ug equals the energy 

flux velocity, then the following property holds for normal waves with real yj. 

6”. For x > 2’ (J < r’) normal waves with positive dispersion have a phase 
being propagated in the positive (negative) direction of the I -axis i. e. , along the 
flux p, and waves with negative dispersion have a phase being propagated from 

00 (--oo), i.e., opposite to the flux P. 
The expression u = U (y) exp iyx is substituted in the initial equations (1.1) 

in a number of papers studying the properties of waves being propagated along a strip 
without distortion of the mode, and this results in ?he problem (3.1) to determine yj 

and Uj (y). Since the problem (3.1) is equivalent to the spectral problem (2.2) for 

the operator L, for k=1, then all waves obtained by the substitution meth- 

od, particularly Lamb waves as well as Rayleigh waves and other surface waves, are 
normal waves of the discrete spectrum of the operator L,. Restoration of the com- 
plete modes Wjl of these waves by means of the shortened modes Uj’ obtained 

is performed by means of (2.6) and contains arbitrariness in the selection of a and p. 
Waves in anisotropic strips are studied by the substitution method in [ll]. 

4, Dispersion dependences for normal waves. Let 
CO, d denote the coefficients of the parametrized functions P (Y), h (Y) and 
~1 (y) in terms of pl, pz, . . ., pi, . . ., PR or, briefly, P = {pi}. Let us con- 

sider them complex quantities, and p a point of parametric space CR of the 
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complex variables of dimensionality R. The dependences Ti (p) obtained from 
(2.2) for k = 1 , where L, = L, (p) are called dispersion relations when the 
point p E CR performs a certain path A in CR . Exactly as in [12,13], we 
consider them branches of the analytic function R of the complex variables which 
describe wave conversion in the neighborhoods of branch points which are points of 

multiplicity Of Yj . 
Introducing the normalized basis {W,O (y)}, (W,O, W,O) = 6,., (a,, is the 

Kronecker delta) and expanding the function W therein, we go from (1.3) to a 
system of ordinary differential equations (C, are coefficients of the expansion) 

IiWds + Al C, = F,, A = II are II, a,, = (L,wr”, W,O) (4.1) 

which describes the set of interacting partial systems [14] obtained from (4.1) for 
a ra = 0, r # s and characterized by partial waves with the wave numbers (I,,. III 
the set of such systems normal waves, whose wave numbers are eigenvalues of the 
matrix A , are possible for ars # 0 . These waves are representations of the nor- 
mal waves considered above in the basis 
coefficients urs depend on (pi} 

{W,O} . In conformity with (4. l), the 

and we introduce the parameters {Q}, form- 
ed by using algebraic operations on elements of the matrix A and which are in one- 
to-one correspondence with the parameters {pi} of the operator L, , to study the 
dispersion dependences of normal waves in the representation of the basis {W,O} . To 
study the neighborhood of the double multiplicity ~1, yz it is sufficient to consider 

the parametric space C2 (PI, pa). Let us replace its space C2 (a,, a,) by select- 

ing W,O, r =z 1, 2 , so that for all (pl, p2) E Ca the influence of other partial 
systems on the system r = 1, 2 would be negligible in the neighborhood of double 

multiplicity points yl, y2 , i.e., the coefficients of wave affinity K,, = va 

(ars - a,,)<1 for r-=1,2 andmy r#s. Let us put al = all - 

a22 = CAo, where Aw = w - oo, a2 = CI?, where J = V%2,U21 

and C is a constant. Let us consider p1 = w and p2 selected so that a one-to- 
one dependence exists between (pl, pa) and (a,, a,). In this case 

I+,2 --A +BAo&-Cl/Ao2+ l2 (4.2) 

and the modes of the normal waves in the basis Wro, r = 1, 2 have the form 

Wl.2’ - 4,2’W,” + 4,22W20, x1,2 - [Am T vAw2 + PI / I (4.3) 

Here x = dr / da is the coefficent of the wave mode distribution [14] andpo = p 
(ho = 0, 1 = 0) E C2, where y1 = yz = yo, is a point of diagonalized multi- 

plicity. Points of Jordan multiplicity ‘tj = 2 lie on the lines do = t il, - 
which intersect at the point p. E C2. 

Let us construct a single-valued analytic function from (4.2). To do this [12,13], 

we introduce two specimens of the space C2, Cl2 and cz2 s and we connect them 

by means of a hypersurface of a slit S, passing through the lines AUK,, = +il. 
Conversion of normal waves into each other occurs on paths A intersecting s,. 

For cases when o is real and the normal waves are subjected to the properties 3’ 

and 4”. we consider a family of paths of two kinds: 1) Z is imaginary and the 
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frequencies 01,~ = 00 & 1 I 1 at which Jordan multiplicities occur, lie on the 
real w axis; 2) Z is real and the frequencies wr,s = o. +- i 1 2 1 are com- 
plex-conjugate. 

For imaginary 1 (conversion of the first kind), the paths 11 intersect both 
Jordan points, Taking account of property 4”) we obtain from (4.2) in the neighbor- 
hood of the first Jordan point yr (or) (ol = o. - 1 l I) 

Yl.2 = A + B (co - coo) & X62 I Z Ilo - 01) (4.4) 

Here A, B and C are real, I B I > 1 C I. For o < o1 the wave numbers 
YI and YZ are real (undamped normal waves). Upon passing through o = or , 

the undamped normal waves are converted into waves with complex yr and ys 
(complex normal waves). The case w = w1 is considered below in Sect. 5. For 

0 = 0s the reverse conversion of complex into undamped waves occurs (yr = 
ys = YII). 

The frequencies o1 and o2 separate the pass and forbidden bands of normal 

waves with numbers j = 1, 2. For I Z I -+ 0 the forbidden band is narrowed, 

transforming into a point. At the multiplicity points y1 and yrr the condition 

ug = &O / & = 0 is satisfied. The wave numbers of normal waves with different 
dispersion laws merge in them. 

The dispersion dependences (4.4) were obtained by a number of authors for Lamb 

waves in homogeneous strips and plates (see [15], for instance) and for flexural waves 
in thin strips in [lS]. 

Such conversions are encountered most often for yr = 0 or yrr = 0, when 
the undamped waves are transformed into damped waves with imaginary wave numbers 

YI and y2. In this case A = B = os = 0 and o1 = o2 = 1. Examples 

of such conversions can be found in Fig. 17 in [15]. Rayleigh already knew of them in 
acoustics and electrodynamics, when he studied waveguide effects in hollow tubes. 

For real Z let A intersect s, between lines on which points of Jordan multi- 

plicity lie (see Fig. 3 in [13] ). In this case, A, B and C are real, B and C 
have the same sign, and B > C. Therefore, do / dy does not equal zero in the 

neighborhood of a double multiplicity and the normal waves are undamped with disper- 

sions of one sign. As the frequency o approaches o. , the normal waves with y1 

and y2 lose localization in the partial systems according to (4.3). and upon going 

through o = 00 exchange modes. This effect, called a conversion of the second 

kind in [12], was first described in [14], and studied in [17] in the example of two 
waveguides coupled by a longitudinal slot. In homogeneous strips (plates) such con- 

versions should be observed in the neighborhoods of the intersection of the partial 
system dispersion curves (see Fig. 17 in [15], say, where the conversion of waves of 
transverse and longitudinal polarization occurs at the intersection of the curves men- 

tioned). Another example of a conversion of the second kind is considered in [13], 
where the role of the partial systems is performed by the Rayleigh wave and one of 
the Lamb waves localized in the unique waveguide originating because of wave refrac- 
tion in a laminar inhomogeneous medium. 

The global patterns of the dispersion curves (see Figs. 17 and 18 in [15], for in- 
stance) is quite complex although it consists locally of just the two conversions 
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described above (with the exception of the point y = 0). Let us note that the global 
classification of normal waves by means of the continuity of the curves Yi (0) is 
impossible, as has been shown in ~131. 

5. General pattern of forced vibrations of an 
e 1 a s t i c s t r i p. According to (2.7), the field of forced vibrations depends on 
both the strip parameters, including the frequency o, and the mode of the external 
force F (r, I/). Normal waves with imaginary and complex wave numbers are 
localized near the source of the external force and do not carry wave energy away 
from it if E is sufficiently small. They produce a wattless load at the source. Associat- 
ed waves with non-real wave numbers for E = 0 possess the same property. Let us 
note that associated waves with real yj do not occur. In order to show this, we turn 

to the case studied in Sect.4. For instance, we consider the approach of 0 to the 
critical frequency wi when the origination of the associated wave should be expected 

since the wave numbers yr and ys are close. To do this, normal waves with the 
mentioned wave numbers should be excited on one side of the section x = x’. How- 
ever, one of these is a plus-wave, and the other is a minus-wave. Hence, they are 

excited on different sides of the section 2 = X’r i.e., interference of the space 
beat type, which is necessary for the origination of an associated wave is excluded. 

But by virtue of property 3”, a point -_YI exists in addition to the point YI and 
for O=Or the interference between waves with the wave numbers yi, and ya+ 

results in the standing wave 

const cos (y~x) exp (iolt) (5. I) 

If ~1 = 0, then the period of the standing wave becomes infinite, and a field 
homogeneous in x holds, which decreases exponentially for E # 0 as 1 5 - 2’ 1 

grows. 
Furthermore, according to (2.7) and property 2’) the field of forced vibrations 

consists of a finite number of undamped normal waves. For x > x2 it has the form 

W (5, !I> N- k Cj+ zT+ I/ II U j' (Y) exp Yj+X 

j+ 

(5.2) 

Cj+= SFj+(l’)exp[-- iyj+X']dX' 

Xl 

For x < x1 the plus sign in the subscripts should be replaced by a minus. There 

are no associated waves in (5.2). However, terms similar to (5.1) occur as approach- 

es the critical values in (5.2). Each passage of w through the critical value is ac- 

companied by the occurrence or disappearance of one of the undamped normal waves, 
which results in a discontinuity in the derivative ~W/&JI in the dependence of the 

field w on the frequency o. 
The wave numbers of a pair of waves in (5.2) come together as the frequency w 

passes through the domain of a conversion of the second kind. If this pair is domin- 

ant in the far field, then because of the space beats a periodic change in the polar- 
izations will be observed with progress along the Z -axis, as for instance, in the 
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cases of [15] considered above, or alternate incidence of the Rayleigh and Lamp waves 
as, for instance, in the case of [18]. 

If f F exp ipx in the interval (x1, 32) , em 

The summation in (5.3) is over j+ for X > Xs and over i - for z < xc. 
For p close to Re Yr and small Icn ~c (r is the number of one of the normal 
waves in the sum (5.3), the wave of number f will be dominant in the far field for 

x > x2 for positive, and for x < x1 for negative dispersion. This occurs because 
of the wave resonance between the external force wave f = F exp ipx , and the 
normal wave of number r Cl91 which causes a linear growth of the normal wave am- 
plitude in the interval @c, ~a). This phenomenon is used to excite individual types 

of normal waves [20]. 
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